In The Name of Allah

Digital Media Laboratory Sharif University of Technology

Statistical Pattern Recognition

Classification: Introduction & Quality assessment

Hamid R. Rabiee Jafar Muhammadi, Nima Pourdamghani

Spring 2012 http://ce.sharif.edu/courses/90-91/2/ce725-1/

Template designed by Jafar Muhammadi

Agenda

- \diamond Introduction
- ♦ Classification: A Two-Step Process
- ♦ Evaluating Classification Methods
- ♦ Classifier Performance
- ♦ Performance Measures
- ♦ Partitioning Methods

ned by Jafar Mu

Introduction

\diamond Classification

- ♦ predicts categorical class labels (discrete or nominal)
- classifies data (constructs a model), based on the training set and the class labels, and uses it in classifying new data

♦ Typical applications

- ♦ Credit approval
- ♦ Target marketing
- ♦ Medical diagnosis
- ♦ Fraud detection

Classification: A two-step process

♦ Model construction

- Each sample is assumed to belong to a predefined class, as determined by the class label
- ♦ The set of samples used for model construction is called "training set"
- The model is represented as classification rules, decision trees, probabilistic model, mathematical formulae and etc.

♦ Model usage

- ♦ for classifying future or unknown objects
- ♦ Estimate accuracy of the model
 - ♦ The known label of test sample is compared with the classified result from the model
 - ♦ Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - ♦ Test set is independent of training set, otherwise over-fitting will occur
- If the accuracy is acceptable, use the model to classify data samples whose class labels are not known

4

Evaluating classification methods

♦ Performance

- ♦ classifier performance: predicting class label
 - ♦ Accuracy, {true positive, true negative}, {false positive, false negative}, …

♦ Time Complexity

- time to construct the model (training time)
 - ♦ the model will be constructed once
 - \diamond can be large
- \diamond time to use the model (classification time)
 - \diamond must be tolerable
 - ♦ need for good data structures

♦ Robustness

- ♦ handling noise and missing values
- ♦ handling incorrect training data

Evaluating classification methods

\diamond Scalability

♦ efficiency in disk-resident databases

♦ Interpretability

- ♦ understanding and insight provided by the model
- ♦ Other measures: goodness of rules or compactness of classification rules
 - ♦ rule of thumb: more compact, better generalization

Performance measures

♦ Performance Measures

- ♦ Accuracy: (TP+TN) / (#data)
- ♦ Specificity: TN / (FP+TN)
- ♦ Sensitivity: TP / (FN+TP)
- Index of Merit: (Specificity + Sensitivity) / 2 = (TP%+TN%) / 2
 - ♦ Also known as "percentage correct classifications"

♦ Performance measured using test set results

- ♦ Test set should be distinct and different from the train (learning) set.
- Several methods are available to partition the data into separated training and testing sets, resulting in different estimates of the "true" index of merit

Data partitioning

- \diamond Goal: validating the classifier and its parameters
 - $\diamond~$ Choose the best parameter set
- $\diamond~$ Idea: use a part of training data as the validation set
- \diamond Validation set must be a good representative for the whole data
- \diamond How to partition the training data

ed by Jafar M

Data partitioning methods

♦ Holdout methods: Random Sampling

- ♦ data is randomly partitioned into two independent sets
- ♦ Always size of train set is twice of test set
- ♦ Assumption: data is uniformly distributed

- ♦ Holdout methods: Bootstrap
 - ♦ resample with replacement n sample of original data as training set.
 - Some numbers in the original sample may be included several times in the bootstrap sample
 (63.2% of samples are distinct)

sd by Jafar M

15

How many folds are needed?

\diamond With a large number of folds

- + The bias of the true error rate estimator will be small (the estimator will be very accurate)
- \diamond The variance of the true error rate estimator will be large
- ♦ The computational time will be very large as well (many experiments)

\diamond With small number of folds

- ✤ + The number of experiments and, therefore, computation time are reduced
- ♦ + The variance of the estimator will be small
- ♦ The bias of the estimator will be large(conservative or higher than the true error rate)
- \diamond In practice, the choice of the number of folds depends on the size of the dataset
 - ♦ For large datasets, even 3-Fold Cross Validation will be quite accurate
 - ♦ For very sparse datasets, we may have to use leave-one-out in order to train on as many examples as possible

ed by Jafar M

Three-way data splits

- ♦ If model selection and true error estimates are to be computed simultaneously, the data needs to be divided into three disjoint sets
 - ♦ Training set: a set of examples used for learning: to fit the parameters of the classifier
 - ♦ Validation set: a set of examples used to tune the parameters of a classifier
 - **Test set:** a set of examples used <u>only</u> to assess the performance of a fully-trained classifier
- ♦ Why separate test and validation sets?
 - The error rate estimate of the final model on validation data will be biased(smaller than the true error rate) since the validation set is used to select the final model
 - ♦ After assessing the final model with the test set, YOU MUST NOT tune the model any further

Sharif University of Technology, Department of Computer Engineering, Pattern Recognition Course

18