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Bayesian Decision Theory

� Bayesian Decision Theory is a fundamental statistical approach that 

quantifies the tradeoffs between various decisions using probabilities and 

costs that accompany such decisions.
� First, we will assume that all probabilities are known.

� Then, we will study the cases where the probabilistic structure is not completely 
known.



Sharif University of Technology, Computer Engineering Department, Pattern Recognition Course4

Bayesian Decision Theory

� We are using fish sorting example to illustrate these topics.

� Fish sorting example revisited
� State of nature is a random variable.

� Define w as the type of fish we observe (state of nature, class) where

� w = w1 for sea bass,

� w = w2 for salmon.

� P(w1) is the a priori probability that the next fish is a sea bass.

� P(w2) is the a priori probability that the next fish is a salmon.
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Prior Probabilities

� Prior probabilities reflect our knowledge of how likely each type of fish 

will appear before we actually see it.

� How can we choose P(w1) and P(w2)?
� Set P(w1) = P(w2) if they are equiprobable (uniform priors).

� May use different values depending on the fishing area, time of the year, etc.

� Assume there are no other types of fish
� (exclusivity and exhaustivity).

1 2P(w ) P(w ) 1+ =
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Prior Probabilities

� How can we make a decision with only the prior information?
� Decide

� What is the probability of error for this decision?
� P(error) = min{P(w1), P(w2)}

1 1 2

2

w   if P(w ) P(w )

w otherwise

 >
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Class-Conditional Probabilities

� Let’s try to improve the decision using the lightness measurement x.
� Let x be a continuous random variable.

� Define P(x|wj) as the class-conditional probability density (probability of x given that the
state of nature is wj for j = 1, 2).

� P(x|w1) and P(x|w2) describe the difference in lightness between populations of sea bass 
and salmon.

� Hypothetical class-conditional probability density functions for two Classes.
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Class-Conditional Probabilities

� How can we make a decision with only the class-conditional probabilities?
� Decide

� Looks good, but prior information are not used. It may degrade decision 

performance
� e.g what happens if we know a priori that 99% of fish are se basses?

� Class-conditional is known as “Maximum Likelihood”, also.

1 1 2

2

w   if P(x|w ) P(x|w )

w otherwise

 >
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Posterior Probabilities

� Suppose we know P(wj) and P(x|wj) for j = 1, 2, and measure the lightness 

of a fish as the value x.

� Define P(wj |x) as the a posteriori probability (probability of the state of nature 
being wj given the measurement of feature value x).

� We can use the Bayes formula to convert the prior probability to the posterior 
probability: 

in which 

P(x|wj) is called the likelihood and P(x) is called the evidence.

j j
j

p(x|w )P(w )
P(w |x)

p(x)
=

2

j j
j 1

p ( x ) p ( x | w )P ( w )
=

= ∑
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Posterior Probabilities

� How can we make a decision after observing the value of x?
� Decide   

� Rewriting the rule gives
� Decide 

Note that, at every x, P(w1|x) + P(w2|x) = 1.

1 1 2

2

w   if P(w |x) P(w |x)

w otherwise

 >

1 2
1

2 1

2

P(x|w ) P(w )
w if 

P(x|w ) P(w )

w otherwise

 >
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Probability of Error

� What is the probability of error for this decision?

� What is the average probability of error?

� Bayes decision rule minimizes this error because

P(error|x) = min{ P(w1|x), P(w2|x) }

1 2

2 1

P(w |x)  if we decide w
P(error | x)

P(w |x) if we decide w

= 

P(error) P(error, x )dx P(error | x )P(x )dx
+∞ +∞

−∞ −∞

= =∫ ∫
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Bayesian Decision Theory

� How can we generalize to
� More than one feature? (replace the scalar x by the feature vector x)

� More than two states of nature? (just a difference in notation)

� Allowing actions other than just decisions? (allow the possibility of rejection)

� Different risks in the decision? (define how costly each action is)

� Notations for generalization

� Let {w1, . . . ,wc} be the finite set of c states of nature (classes, categories).

� Let {α1, . . . , αa} be the finite set of a possible actions.

� Let λ(αi|wj) be the loss incurred for taking action i when the state of nature is wj .

� Let x be the d-dim vector-valued random variable called the feature vector.
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Conditional Risk

� Suppose we observe x and take action αi.
� If the true state of nature is wj , we incur the loss λ(αi|wj).

� The expected loss with taking action i is

It is also called the conditional risk.

c

i i j j
j 1

R( |x) ( |w )P(w |x)
=

α = λ α∑
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Conditional Risk

� We want to find the decision rule that minimizes the overall risk

� Bayesian decision rule minimizes the overall risk by selecting the action αi 

for which R(αi|x) is minimum

� The resulting minimum overall risk is called the Bayesian risk and is the 

best performance that can be achieved.

R R( (x)|x)p(x)dx= α∫
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Conditional Risk

� Two-category classification example
� Define

� α1 : deciding w1

� α2 :   deciding w2

� λij : λ(αi | wj)

� Conditional risks can be written as

1 11 1 12 2

2 21 1 22 2

R( |x) P(w |x) P(w |x)

R( |x) P(w |x) 2P(w |x)

α =λ +λ
α =λ +λ
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Conditional Risk

� Two-category classification example 
� The minimum-risk decision rule becomes

� Decide 

� This corresponds to deciding w1 if

comparing the likelihood ratio to a threshold that is independent of the 
observation x.

1 21 11 1 12 22 2

2

w if ( )P(w | x ) ( )P(w | x )

w otherwise

 λ − λ > λ − λ

1 12 22 2

2 21 11 1

p(x|w ) P(w )

p(x|w ) P(w )

λ −λ
>

λ −λ
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Min-Error-Rate Classification

� Problem definition:
� Actions are decisions on classes (αi is deciding wi).

� If action αi is taken and the true state of nature is wj , then the decision is correct 

if i = j and in error if i≠j.

� We want to find a decision rule that minimizes the probability of error.

� Define the zero-one loss function (all errors are equally costly).

� Conditional risk becomes

i j

0 if i j
( |w )   i,j 1,...,c

1 if i j

 =λ α = = ≠

c

i i j j i
j 1 j i

R ( | x ) ( | w j)P( w | x ) P( w | x ) 1 P( w | x )
= ≠

α = λ α = = −∑ ∑
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Min-Error-Rate Classification

� Minimizing the risk requires maximizing P(wi|x) and results in the 

minimum-error decision rule
� Decide wi if P(wi|x) > P(wj |x) for all j≠i.

� The resulting error is called the Bayesian error
� This is the best performance that can be achieved.
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Probabilistic Discriminant Functions

� Discriminant functions: a useful way of representing classifiers
� gi(x), i = 1, . . . , c

� Classifier assigns a feature vector x to class wi if gi(x) > gj(x) for all j≠i.

� For the classifier that minimizes conditional risk

� gi(x) = −R(αi |x).

� For the classifier that minimizes error

� gi(x) = P(wi|x).
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Probabilistic Discriminant Functions

� These functions divide the feature space into c decision regions separated 

by decision boundaries (R1, . . . , Rc).

� Note that the results do not change even if we replace every gi(x) by f(gi(x)) 
where f(·) is a monotonically increasing function (e.g., logarithm).

� This may lead to significant analytical and computational simplifications.
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Discriminant Funcs: Gaussian Density

� Discriminant functions for the Gaussian density in case of min-error-rate 

classification, can be written as (why?):
� gi(x) = ln p(x|wi) + ln P(wi),    p(x|wi) = N(µi, Σi), or

T 1
i i i i i i

1 1 1
g (x) (x ) (x ) ln2 | | lnP(w )

2 2 2
−=− −µ Σ −µ − π− Σ +
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Discriminant Funcs: Gaussian Density

� Case 1: Σi=σ2I
� Discriminant functions are

Where                      and 

� (wi0 is the threshold or bias for the i’th category).

� Decision boundaries are the hyperplanes gi(x) = gj(x), and can be written as

wij
T (x − x0

(ij)) = 0

Where                    and

Hyperplane separating Ri and Rj passes through the point x0
(ij) and is orthogonal 

to the vector w.

T
i i i0g (x) w x w= +

i i
2

1
w = µ

δ
T

i0 i i i2

1
w ln P(w )= µ µ +

δ

ij i jw =µ −µ
2

(ij) i
0 i j i j2

ji j

P(w )1
x ( ) ln ( )

2 P(w )|| ||

δ= µ +µ − µ −µ
µ +µ
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Discriminant Funcs: Gaussian Density

� Case 1: Σi=σ2I
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Discriminant Funcs: Gaussian Density

� Case 1: Σi=σ2I

� Special case when P(wi) are the same for i = 1, . . . , c is the minimum-distance 
classifier that uses the decision rule

assign x to wi*  where i* = arg min ||x-µi||, i=1,…,c



Sharif University of Technology, Computer Engineering Department, Pattern Recognition Course25

Discriminant Funcs: Gaussian Density

� Case 2: Σi= Σ
� Discriminant functions are

Where                  and

� Decision boundaries can be written as wij
T (x − x0

(ij)) = 0

Where                     and

Hyperplane passes through x0
(ij) but is not necessarily orthogonal to the line 

between the means.

T
i i i0g (x) w x w= +

1
i iw −=Σ µ T 1

i0 i i iw ln P(w )−=µ Σ µ +

ij i jw =µ −µ (ij) i
0 i j i jT 1

ji j i j

P(w )1 1
x ( ) ln ( )

2 P(w )( ) ( )−= µ +µ − µ −µ
µ +µ Σ µ +µ
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Discriminant Funcs: Gaussian Density

� Case 2: Σi= Σ
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Discriminant Funcs: Gaussian Density

� Case 3: Σi= Arbitrary
� Discriminant functions are

Where                    ,                    and

� Decision boundaries are hyperquadrics

T T
i i i i0g (x) x W x w x w= + +

1
i i iw −=Σ µ T 1

i0 i i i i i

1 1
w ln| | ln P(w )

2 2
−=− µ Σ µ − Σ +1

i i

1
W

2
−=− Σ
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Discriminant Funcs: Gaussian Density

� Case 3: Σi= Arbitrary
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Discriminant Funcs: Gaussian Density

� Case 3: Σi= Arbitrary
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Minimax Classification

� In many real life applications, prior probabilities may be unknown, or 

time-varying, so we can not have a Bayesian optimal classification.

� However, one may wish to minimize the max possible overall risk.
� The overall risk is,

and , then

[ ]

[ ]
1

11 1 1 12 2 2

21 1 1 22 2 2

2

( ) ( | ) ( ) ( | )

( ) ( | ) ( ) ( | )

R

R

R P w P x w P w P x w dx

P w P x w P w P x w dx

λ λ

λ λ

= +

+ +

∫

∫

2 1( ) 1 ( )P w P w= −
1 2

1 2( | ) 1 ( | )
R R

P x w dx P x w dx= −∫ ∫

( )
1

2

1 1 22 12 22 2

1 11 22 21 11 1 12 22 2

1

( ), ( ) ( | )

( ) ( ) ( ) ( | ) ( ) ( | )

R

R R

R P w R P x w dx

P w P x w dx P x w dx

λ λ λ

λ λ λ λ λ λ

= + −

 
 + − − − − − 
  

∫

∫ ∫
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Minimax Classification

� For a fix R1, the overall risk is a linear function of P(w1), and the maximum 

error occurs in P(w1)=0, or P(w1)=1.
� Why should the line be a tangent to R(P(w1),R1)?

� For all possible R1s, we are looking for the one which minimizes this maximum 

error, i.e.

( ){ }
1

1 1 1arg min max ( ),
R

R R P w R=
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Minimax Derivation

� Another way to solve R1 in minimax is from:

� If you get multiple solutions, choose one that gives you the minimum Risk

( )
1

2 1

1 1 22 12 22 2

1 11 22 21 11 1 12 22 2

( ), ( ) ( | )

( ) ( ) ( | ) ( ) ( | )

R

R R

R P w R p x w dx

P p x w dx p x w dx

λ λ λ

λ λ λ λ λ λ

= + −

   + × − + − − −    

∫

∫ ∫
0=

 R , minimax riskmm=



Sharif University of Technology, Computer Engineering Department, Pattern Recognition Course33

Neyman-Pearson Criterion

� If we do not know the prior probabilities, Bayesian optimum classification 

is not possible.

� Suppose that the goal is maximizing the probability of detection, while 

constraining the probability of false-alarm to be less than or equal to a certain 
value.

� E.g. in a radar system false alarm (assuming an enemy aircraft is approaching 

while this is not the case) may be OK but it is very important to maximize the 
probability of detecting a real attack

� Based on this constraint (Neyman-Pearson criterion) we can design a classifier

� Typically must adjust boundaries numerically (for some distributions, such as 
Gaussian, analytical solutions do exist.
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Any Question?

End of Lecture 6

Thank you!
Spring 2012

http://ce.sharif.edu/courses/90-91/2/ce725-1/


