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Bayesian Decision Theory

< Bayesian Decision Theory is a fundamental statistical approach that

quantifies the tradeoffs between various decisions using probabilities and

costs that accompany such decisions.

< First, we will assume that all probabilities are known.

< Then, we will study the cases where the probabilistic structure is not completely

known.
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Bayesian Decision Theory

<> We are using fish sorting example to illustrate these topics.

<> Fish sorting example revisited

<~ State of nature is a random variable.

<- Define w as the type of fish we observe (state of nature, class) where

< w = w, for sea bass,
< w = w, for salmon.
< P(w,) is the a priori probability that the next fish is a sea bass.

< P(w,) is the a priori probability that the next fish is a salmon.
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Prior Probabilities

<> Prior probabilities reflect our knowledge of how likely each type of fish

will appear before we actually see it.
<~ How can we choose P(w,) and P(w,)?
< Set P(w,) = P(w,) if they are equiprobable (uniform priors).
< May use different values depending on the fishing area, time of the year, etc.

< Assume there are no other types of fish P(w )+ P(w,)=1

< (exclusivity and exhaustivity).
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Prior Probabilities

< How can we make a decision with only the prior information?
< Decide |w  if P(w, )>P(w,)
w,  otherwise

< What is the probability of error for this decision?
<~ P(error) = min{P(w,), P(w,)}
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Class-Conditional Probabilities

< Let’s try to improve the decision using the lightness measurement x.

< Let x be a continuous random variable.

< Define P(x|w;) as the class-conditional probability density (probability of x given that the

state of nature is w; for j =1, 2).

< P(x]w,) and P(x|w,) describe the difference in lightness between populations of sea bass

and salmon.

< Hypothetical class-conditional probability density functions for two Classes.

pix|w)
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Class-Conditional Probabilities

< How can we make a decision with only the class-conditional probabilities?
< Decide |w, if P(x|w, )>P(x|w,)
w, otherwise

< Looks good, but prior information are not used. It may degrade decision
performance

< e.g what happens if we know a priori that 99% of fish are se basses?

<> Class-conditional is known as “Maximum Likelihood”, also.
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Posterior Probabilities

< Suppose we know P(w;) and P(x|w;) for j =1, 2, and measure the lightness

of a fish as the value x.

< Define P(w; [x) as the a posteriori probability (probability of the state of nature
being w; given the measurement of feature value x).

<~ We can use the Bayes formula to convert the prior probability to the posterior
probability:
p(x|w;)P(w;)
p(x)

P(w, |x)=

in which

pG)= 3 plx|wP(w))

P(x|w;) is called the likelihood and P(x) is called the evidence.
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Posterior Probabilities

< How can we make a decision after observing the value of x?
< Decide |w, if P(w, |x)>P(w,|x)
w, otherwise

< Rewriting the rule gives

<~ Decide .. P(x|w,) P(w,)
w, if >
P(x|w,) P(w,)
w, otherwise

Note that, at every x, P(w,|x) + P(w,|x) = 1.

10
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Probability of Error

<> What is the probability of error for this decision?

P(error | x) P(w, |x) if we decide w,
X )=
P(w,|x) if we decide w,

< What is the average probability of error?

+00 oo
P(error) = fP(error,x)dX: fP(error|x)P(x)dx

< Bayes decision rule minimizes this error because

P(error|x) = min{ P(w,|x), P(w,|x) }
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Bayesian Decision Theory

< How can we generalize to
<~ More than one feature? (replace the scalar x by the feature vector x)
<- More than two states of nature? (just a difference in notation)
<- Allowing actions other than just decisions? (allow the possibility of rejection)

< Different risks in the decision? (define how costly each action is)

< Notations for generalization
< Let {w,, ... ,w} be the finite set of c states of nature (classes, categories).
< Let{oy, ..., o} be the finite set of a possible actions.
< Let A(a;|w;) be the loss incurred for taking action i when the state of nature is w; .

< Let x be the d-dim vector-valued random variable called the feature vector.

12
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Conditional Risk

< Suppose we observe x and take action o..
< If the true state of nature is w; , we incur the loss A(o;|w;).

< The expected loss with taking action i is

R(o, |X)= Z Aoy, | W P(w; [ )

It is also called the conditional risk.
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Conditional Risk

<> We want to find the decision rule that minimizes the overall risk
R = f R(a(x) | x)p(x)dx

<~ Bayesian decision rule minimizes the overall risk by selecting the action o,
for which R(a;/x) is minimum
< The resulting minimum overall risk is called the Bayesian risk and is the

best performance that can be achieved.
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Conditional Risk

< Two-category classification example
< Define

< a4 : deciding w;,
< a,: deciding w,
<> xij Mo | WJ-)

<~ Conditional risks can be written as

R(a, [x) =X, P(w, |x)+ X, P(w,|x)
R(a, [x) =X, P(w, |[x)+X,,2P(W, |x)
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Conditional Risk

< Two-category classification example

< The minimum-risk decision rule becomes

< Decide | w, if(N\,, = X\ J)P(w [x)> (N, — X\,,)P(w, |x)
w, otherwise
<> This corresponds to deciding w1 if

p(X | W1) > >\12 _ >\22 P(W2)
p(X | W2) >\21 - >\11 P(Wl)

comparing the likelihood ratio to a threshold that is independent of the
observation x.
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Min-Error-Rate Classification

<> Problem definition:

< Actions are decisions on classes (¢, is deciding w;).

< If action ¢, is taken and the true state of nature is w;, then the decision is correct
if i =j and in error if i#j.

< We want to find a decision rule that minimizes the probability of error.

< Define the zero-one loss function (all errors are equally costly).

<> Conditional risk becomes

R(a, |x)= Z(::X(oci |Wj)P(Wj | x) = Z P(wj |x)=1—P(w,|x)

j=i

17

Sharif University of Technology, Computer Engineering Department, Pattern Recognition Course _

miplate desipned by |afar Muhammad

Te



Min-Error-Rate Classification

< Minimizing the risk requires maximizing P(w;|x) and results in the
minimum-error decision rule

< Decide w; if P(w;|x) > P(w; |x) for all j#i.

< The resulting error is called the Bayesian error

< This is the best performance that can be achieved.

18
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Probabilistic Discriminant Functions

< Discriminant functions: a useful way of representing classifiers
< g(x),i=1,...,c
< Classifier assigns a feature vector x to class w; if g(x) > g;(x) for all j#i.
< For the classifier that minimizes conditional risk
< gi(x) = —R(o; [x).
< For the classifier that minimizes error

< gi(x) = P(w;[x).
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Probabilistic Discriminant Functions

<> These functions divide the feature space into ¢ decision regions separated
by decision boundaries (R, ..., R).

< Note that the results do not change even if we replace every g;(x) by f(g;(x))
where f(-) is a monotonically increasing function (e.g., logarithm).

< This may lead to significant analytical and computational simplifications.
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Discriminant Funcs: Gaussian Density

< Discriminant functions for the Gaussian density in case of min-error-rate

classification, can be written as (why?):

< gi(x) = In p(x]w;) + In P(w;), p(x|w;) = N(p;, Z;), or

8, () =~ (x—p)'%, (x—1y) ~In2w— 2|5, |+ InP(w,)
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Discriminant Funcs: Gaussian Density

< Case 1: X=6’l
< Discriminant functions are
g () =W+ W,
1 1
Where w, :6—ui and W, :6_2M1TM1 +In P(Wi)

2

< (wy, is the threshold or bias for the i'th category).

< Decision boundaries are the hyperplanes g;(x) = g;(x), and can be written as
w;T (x —x,M) =0

* In P(w,)

||H1+Hj||2 P(Wj)

i _ 1
Where w;; =, —p;and x;” :E(Mi +pi)— (s —1y)

Hyperplane separating R, and R, passes through the point x,) and is orthogonal
to the vector w.
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Discriminant Funcs: Gaussian Density

<> Case 1: X=c¢’l

.2 i 2
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Discriminant Funcs: Gaussian Density

< Case 1: X=6’l

< Special case when P(w,) are the same fori=1, ..., cis the minimum-distance

classifier that uses the decision rule

assign x to w,. where i* = arg min ||x-p|, i=1,...,c

24
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Discriminant Funcs: Gaussian Density

< Case2: X=X
< Discriminant functions are g.(x)= WiTX +w,,
Where w, =Y ';and w,, =p; X ', + InP(w,)

<~ Decision boundaries can be written as w;" (x — x,{") = 0
1 P(Wl)
e In
(G 1) 27 Gy 1) Pwy)

m_ 1
Where w, =y, —; and xW ZE(Mi i) — (s — 1)

Hyperplane passes through x,(i) but is not necessarily orthogonal to the line
between the means.

25
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Discriminant Funcs: Gaussian Density

< Case2: X=X
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Discriminant Funcs: Gaussian Density

< Case 3: X.= Arbitrary
< Discriminant functions are g.(x)= XTVViX + WiTX +w,,

N
Where W, =— =5, w, =5, and W, Z—Eufzi i —Elnlﬁi |+1InP(w,)
2

< Decision boundaries are hyperquadrics

27
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Discriminant Funcs: Gaussian Density

< Case 3: X.= Arbitrary

28
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Minimax Classification

<> In many real life applications, prior probabilities may be unknown, or
time-varying, so we can not have a Bayesian optimal classification.

< However, one may wish to minimize the max possible overall risk.

<> The overall risk is,

R= [ [\ Pw,)PCe|w,) + A, P(w,)P(x| w, dx
+ f A P(w,)P(x|w,)+ A, P(w,)P(x|w,)dx

P(wz)zl—P(wl)andfP(x|w1)dx:1—fP(x|w2)dx, then
R R,

1

R(P(w,),R) =X, +(\, = \,) [ PCx|w,)dx

1

+P(w,)|O, = A,) = Oy, =) [ POelw)dx =\, = A,,) [ Plx|w, )dx
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Minimax Classification

< For a fix R, the overall risk is a linear function of P(w,), and the maximum
error occurs in P(w,)=0, or P(w,)=1.

<~ Why should the line be a tangent to R(P(w,),R,)?

< For all possible R;s, we are looking for the one which minimizes this maximum

error, i.e. *
Risk |
R, =argmin{max R(P(w,),R, )} B

R

1
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Minimax Derivation

<~ Another way to solve R, in minimax is from:

R(P(w)),R,) L), + O\, = A,,) [ plx|w,)dx
R, = R, minimax risk
()‘11 o )‘22)+ ()‘21 o )‘11)fp(x|w1)dx_ (>‘12 - Azz)fp(x“’v )dx
R, R; =0

< If you get multiple solutions, choose one that gives you the minimum Risk

32
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Neyman-Pearson Criterion

< If we do not know the prior probabilities, Bayesian optimum classification

is not possible.

<- Suppose that the goal is maximizing the probability of detection, while

constraining the probability of false-alarm to be less than or equal to a certain

value.

< E.g. in a radar system false alarm (assuming an enemy aircraft is approaching

while this is not the case) may be OK but it is very important to maximize the

probability of detecting a real attack

<- Based on this constraint (Neyman-Pearson criterion) we can design a classifier

< Typically must adjust boundaries numerically (for some distributions, such as

Gaussian, analytical solutions do exist.
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Any Question?

End of Lecture 6

Thank you!
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