

Digital Media Laboratory Sharif University of Technology

Statistical Pattern Recognition

Classification - Statistical Methods

Hamid R. Rabiee
Jafar Muhammadi, Alireza Ghassemi

Spring 2012

http://ce.sharif.edu/courses/90-91/2/ce725-1/

Agenda

- **♦ Bayesian Decision Theory**
- **♦** Prior Probabilities
- **♦ Class-Conditional Probabilities**
- **♦ Posterior Probabilities**
- **♦ Probability of Error**
- **♦** Conditional Risk
- **♦ Min-Error-Rate Classification**
- **Probabilistic Discriminant Functions**
 - **♦ Discriminant Functions: Gaussian Density**
- **♦ Minimax Classification**
- **♦ Neyman-Pearson**

Bayesian Decision Theory

- Bayesian Decision Theory is a fundamental statistical approach that quantifies the tradeoffs between various decisions using probabilities and costs that accompany such decisions.
 - ♦ First, we will assume that all probabilities are known.
 - Then, we will study the cases where the probabilistic structure is not completely known.

Bayesian Decision Theory

- **♦** We are using fish sorting example to illustrate these topics.
- **♦ Fish sorting example revisited**
 - ♦ State of nature is a random variable.
 - ♦ Define w as the type of fish we observe (state of nature, class) where
 - \Leftrightarrow w = w₁ for sea bass,
 - \Rightarrow w = w₂ for salmon.
 - \Rightarrow P(w₁) is the a priori probability that the next fish is a sea bass.
 - \Rightarrow P(w₂) is the a priori probability that the next fish is a salmon.

Prior Probabilities

- ❖ Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- \Rightarrow How can we choose $P(w_1)$ and $P(w_2)$?
 - ♦ Set $P(w_1) = P(w_2)$ if they are equiprobable (uniform priors).
 - **♦ May use different values depending on the fishing area, time of the year, etc.**
- \Rightarrow Assume there are no other types of fish $P(w_1) + P(w_2) = 1$
 - ♦ (exclusivity and exhaustivity).

Prior Probabilities

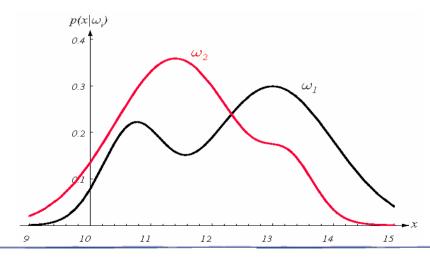
♦ How can we make a decision with only the prior information?

$$\label{eq:power_power} & \Rightarrow & \text{Decide} \begin{cases} w_{_1} & \text{if } P(w_{_1}) \! > \! P(w_{_2}) \\ w_{_2} & \text{otherwise} \end{cases}$$

- **♦** What is the probability of error for this decision?
 - \Rightarrow P(error) = min{P(w₁), P(w₂)}

Class-Conditional Probabilities

- \diamond Let's try to improve the decision using the lightness measurement x.
 - **♦** Let x be a continuous random variable.
 - ♦ Define $P(x|w_j)$ as the class-conditional probability density (probability of x given that the state of nature is w_i for j = 1, 2).
 - → P(x|w₁) and P(x|w₂) describe the difference in lightness between populations of sea bass and salmon.
 - **♦ Hypothetical class-conditional probability density functions for two Classes.**



Class-Conditional Probabilities

- **♦ How can we make a decision with only the class-conditional probabilities?**
 - $\Rightarrow \text{ Decide } \begin{cases} w_1 & \text{if } P(x|w_1) > P(x|w_2) \\ w_2 & \text{otherwise} \end{cases}$
- **♦ Looks good, but prior information are not used. It may degrade decision performance**
 - ♦ e.g what happens if we know a priori that 99% of fish are se basses?
- **♦ Class-conditional is known as "Maximum Likelihood", also.**

Posterior Probabilities

- \Rightarrow Suppose we know $P(w_j)$ and $P(x|w_j)$ for j = 1, 2, and measure the lightness of a fish as the value x.
 - → Define P(w_j |x) as the a posteriori probability (probability of the state of nature being w_i given the measurement of feature value x).
 - We can use the Bayes formula to convert the prior probability to the posterior probability:

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

in which

$$p(x) = \sum_{j=1}^{2} p(x | w_j) P(w_j)$$

 $P(x|w_i)$ is called the likelihood and P(x) is called the evidence.

Posterior Probabilities

 \Rightarrow How can we make a decision after observing the value of x?

$$\begin{tabular}{lll} \diamondsuit & \textbf{Decide} & \left\{ w_{_1} & if \ P(w_{_1}|x) > P(w_{_2}|x) \\ w_{_2} & otherwise \\ \end{tabular} \right. \\$$

♦ Rewriting the rule gives

$$\Rightarrow \text{ Decide} \begin{cases} w_1 & \text{if } \frac{P(x|w_1)}{P(x|w_2)} > \frac{P(w_2)}{P(w_1)} \\ w_2 & \text{otherwise} \end{cases}$$

Note that, at every x, $P(w_1|x) + P(w_2|x) = 1$.

Probability of Error

♦ What is the probability of error for this decision?

$$P(\text{error} \mid x) = \begin{cases} P(w_1 \mid x) & \text{if we decide } w_2 \\ P(w_2 \mid x) & \text{if we decide } w_1 \end{cases}$$

♦ What is the average probability of error?

$$P(error) = \int_{-\infty}^{+\infty} P(error, x) dx = \int_{-\infty}^{+\infty} P(error \mid x) P(x) dx$$

♦ Bayes decision rule minimizes this error because

$$P(error|x) = min\{ P(w_1|x), P(w_2|x) \}$$

Bayesian Decision Theory

- **♦** How can we generalize to
 - ♦ More than one feature? (replace the scalar x by the feature vector x)
 - ♦ More than two states of nature? (just a difference in notation)
 - ♦ Allowing actions other than just decisions? (allow the possibility of rejection)
 - ♦ Different risks in the decision? (define how costly each action is)
 - ♦ Notations for generalization
 - \diamond Let $\{w_1, \ldots, w_c\}$ be the finite set of c states of nature (classes, categories).
 - \Leftrightarrow Let $\{\alpha_1, \ldots, \alpha_a\}$ be the finite set of a possible actions.
 - \Leftrightarrow Let $\lambda(\alpha_i|w_i)$ be the loss incurred for taking action i when the state of nature is w_i .
 - ♦ Let x be the d-dim vector-valued random variable called the feature vector.

- \diamond Suppose we observe x and take action α_i .
 - \Rightarrow If the true state of nature is w_i , we incur the loss $\lambda(\alpha_i|w_i)$.
 - **♦ The expected loss with taking action i is**

$$R(\alpha_i | x) = \sum_{j=1}^{c} \lambda(\alpha_i | w_j) P(w_j | x)$$

It is also called the conditional risk.

♦ We want to find the decision rule that minimizes the overall risk

$$R = \int R(\alpha(x)|x)p(x)dx$$

- \Rightarrow Bayesian decision rule minimizes the overall risk by selecting the action α_i for which $R(\alpha_i|x)$ is minimum
- ♦ The resulting minimum overall risk is called the Bayesian risk and is the best performance that can be achieved.

- **♦ Two-category classification example**
 - **♦ Define**

 $\Rightarrow \alpha_1$: deciding w_1

 $\Rightarrow \alpha_2$: deciding w_2

 $\Leftrightarrow \lambda_{ij} : \lambda(\alpha_i \mid \mathbf{w}_i)$

♦ Conditional risks can be written as

$$R(\alpha_1 | x) = \lambda_{11} P(w_1 | x) + \lambda_{12} P(w_2 | x)$$

$$R(\alpha_{2} | x) = \lambda_{21}P(w_{1} | x) + \lambda_{22} 2P(w_{2} | x)$$

- **♦** Two-category classification example
 - ♦ The minimum-risk decision rule becomes

$$\Rightarrow \text{Decide } \begin{cases} w_1 \text{ if } (\lambda_{21} - \lambda_{11}) P(w_1 \mid x) > (\lambda_{12} - \lambda_{22}) P(w_2 \mid x) \\ w_2 & \text{otherwise} \end{cases}$$

♦ This corresponds to deciding w1 if

$$\frac{p(x|w_1)}{p(x|w_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(w_2)}{P(w_1)}$$

comparing the likelihood ratio to a threshold that is independent of the observation x.

Min-Error-Rate Classification

- **♦ Problem definition:**
 - \diamond Actions are decisions on classes (α_i is deciding w_i).
 - ♦ If action α_i is taken and the true state of nature is w_j , then the decision is correct if i = j and in error if $i \neq j$.
 - ♦ We want to find a decision rule that minimizes the probability of error.
- **♦ Define the zero-one loss function (all errors are equally costly).**

$$\lambda(\alpha_i | w_j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j \end{cases} i, j = 1, ..., c$$

♦ Conditional risk becomes

$$R(\alpha_i | x) = \sum_{j=1}^{c} \lambda(\alpha_i | wj)P(w_j | x) = \sum_{j \neq i} P(w_j | x) = 1 - P(w_i | x)$$

Min-Error-Rate Classification

- \Leftrightarrow Minimizing the risk requires maximizing $P(w_i|x)$ and results in the minimum-error decision rule
 - ♦ Decide w_i if $P(w_i|x) > P(w_i|x)$ for all $j\neq i$.
- **♦ The resulting error is called the Bayesian error**
 - **♦** This is the best performance that can be achieved.

Probabilistic Discriminant Functions

♦ Discriminant functions: a useful way of representing classifiers

$$\Leftrightarrow$$
 $g_i(x)$, $i = 1, \ldots, c$

- \diamondsuit Classifier assigns a feature vector x to class w_i if $g_i(x) > g_j(x)$ for all $j \neq i$.
- ♦ For the classifier that minimizes conditional risk

$$\Leftrightarrow$$
 g_i(x) = -R(α _i |x).

♦ For the classifier that minimizes error

$$\Leftrightarrow g_i(x) = P(w_i|x).$$

Probabilistic Discriminant Functions

- \diamond These functions divide the feature space into c decision regions separated by decision boundaries (R_1, \ldots, R_c) .
 - \diamond Note that the results do not change even if we replace every $g_i(x)$ by $f(g_i(x))$ where $f(\cdot)$ is a monotonically increasing function (e.g., logarithm).
 - ♦ This may lead to significant analytical and computational simplifications.

♦ Discriminant functions for the Gaussian density in case of min-error-rate classification, can be written as (why?):

$$\Rightarrow$$
 g_i(x) = In p(x|w_i) + In P(w_i), p(x|w_i) = N(μ _i, Σ _i), or

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{T} \Sigma_{i}^{-1}(x - \mu_{i}) - \frac{1}{2} \ln 2\pi - \frac{1}{2} |\Sigma_{i}| + \ln P(w_{i})$$

- \Leftrightarrow Case 1: $\Sigma_i = \sigma^2 I$
 - ♦ Discriminant functions are

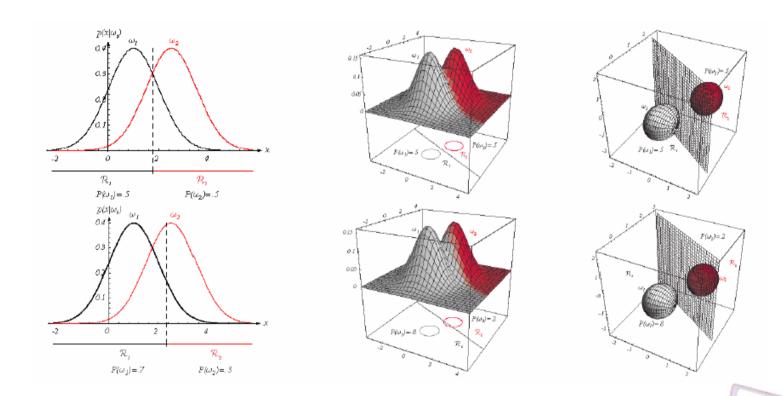
$$\begin{split} & g_i(x)\!=\!w_i^Tx+w_{io} \\ \text{Where} \quad & w_i\!=\!\frac{1}{\delta_{_2}}\mu_i \text{ and } w_{io}\!=\!\frac{1}{\delta^{_2}}\mu_i^T\mu_i+\ln P(w_i) \\ & \Leftrightarrow \text{(w_{io} is the threshold or bias for the i'th category)}. \end{split}$$

 \Rightarrow Decision boundaries are the hyperplanes $g_i(x) = g_i(x)$, and can be written as

$$\begin{aligned} \textbf{W_{ij}^T (x - x_0^{(ij)}) = 0} \\ \textbf{Where} \ w_{ij} = & \ \mu_i - \mu_j \ \text{and} \ x_o^{(ij)} = \frac{1}{2} (\mu_i + \mu_j) - \frac{\delta^2}{||\mu_i + \mu_j||^2} ln \frac{P(w_i)}{P(w_j)} (\mu_i - \mu_j) \end{aligned}$$

Hyperplane separating R_i and R_j passes through the point $x_0^{(ij)}$ and is orthogonal to the vector w.

 \Leftrightarrow Case 1: $\Sigma_i = \sigma^2 I$



- \Leftrightarrow Case 1: $\Sigma_i = \sigma^2 I$
 - ♦ Special case when $P(w_i)$ are the same for i = 1, ..., c is the minimum-distance classifier that uses the decision rule

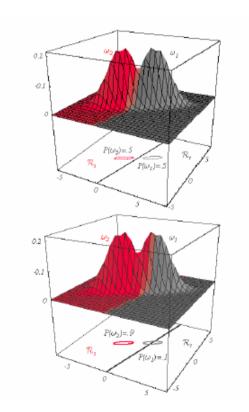
assign x to w_{i*} where $i* = arg min ||x-\mu_i||, i=1,...,c$

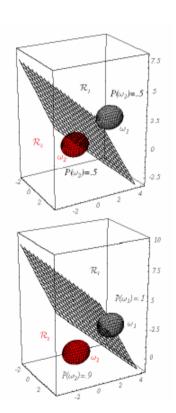
- \Leftrightarrow Case 2: $\Sigma_i = \Sigma$

 - ♦ Decision boundaries can be written as $w_{ij}^T (x x_0^{(ij)}) = 0$ Where $w_i = 0$ and $v_i^{(ij)} = 1$ (iii) $v_i^T = 1$ $v_i^T = 1$ $v_i^T = 1$

Hyperplane passes through $x_0^{(ij)}$ but is not necessarily orthogonal to the line between the means.

 \Leftrightarrow Case 2: $\Sigma_i = \Sigma$

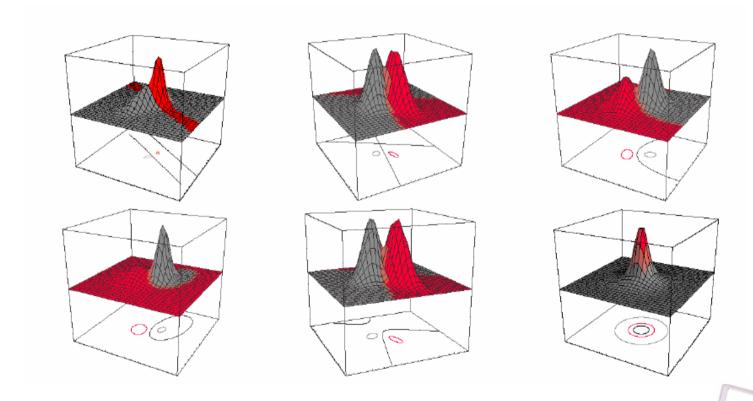




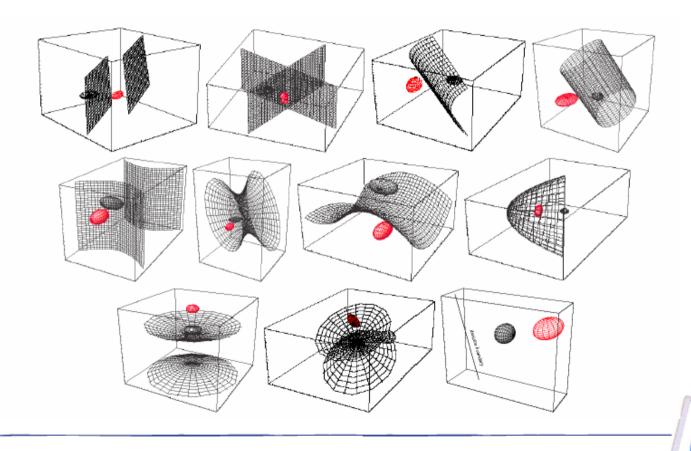
- \Leftrightarrow Case 3: Σ_i = Arbitrary

 - ♦ Decision boundaries are hyperquadrics

 \Leftrightarrow Case 3: Σ_i = Arbitrary



 \Leftrightarrow Case 3: Σ_i = Arbitrary



Minimax Classification

- ❖ In many real life applications, prior probabilities may be unknown, or time-varying, so we can not have a Bayesian optimal classification.
- **♦** However, one may wish to minimize the max possible overall risk.
 - **♦** The overall risk is,

$$R = \int_{R_1} [\lambda_{11} P(w_1) P(x | w_1) + \lambda_{12} P(w_2) P(x | w_2)] dx$$
$$+ \int_{R_2} [\lambda_{21} P(w_1) P(x | w_1) + \lambda_{22} P(w_2) P(x | w_2)] dx$$

$$P(w_2) = 1 - P(w_1)$$
 and $\int_{R_1} P(x | w_1) dx = 1 - \int_{R_2} P(x | w_2) dx$, then

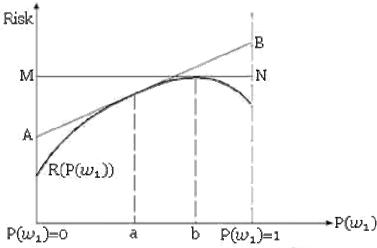
$$R(P(w_1),R_1) = \lambda_{22} + (\lambda_{12} - \lambda_{22}) \int_{R_1} P(x|w_2) dx$$

$$+P(w_{1})\left[(\lambda_{11}-\lambda_{22})-(\lambda_{21}-\lambda_{11})\int_{R_{2}}P(x\,|\,w_{1})dx-(\lambda_{12}-\lambda_{22})\int_{R_{1}}P(x\,|\,w_{2})dx\right]$$

Minimax Classification

- ♦ For a fix R_1 , the overall risk is a linear function of $P(w_1)$, and the maximum error occurs in $P(w_1)=0$, or $P(w_1)=1$.
 - \diamond Why should the line be a tangent to R(P(w₁),R₁)?
- \diamond For all possible R_1 s, we are looking for the one which minimizes this maximum error, i.e.

$$R_{\scriptscriptstyle 1} = \arg\min_{R_{\scriptscriptstyle 1}} \left\{ \max R(P(w_{\scriptscriptstyle 1}), R_{\scriptscriptstyle 1}) \right\}$$



Minimax Derivation

 \diamond Another way to solve R_1 in minimax is from:

$$R(P(w_{1}), R_{1}) = \lambda_{22} + (\lambda_{12} - \lambda_{22}) \int_{R_{1}} p(x | w_{2}) dx$$

$$= R_{mm}, \text{ minimax risk}$$

$$P_{1} \times (\lambda_{11} - \lambda_{22}) + (\lambda_{21} - \lambda_{11}) \int_{R_{2}} p(x | w_{1}) dx - (\lambda_{12} - \lambda_{22}) \int_{R_{1}} p(x | w_{2}) dx$$

$$= 0$$

♦ If you get multiple solutions, choose one that gives you the minimum Risk

Neyman-Pearson Criterion

- ❖ If we do not know the prior probabilities, Bayesian optimum classification is not possible.
 - Suppose that the goal is maximizing the probability of detection, while constraining the probability of false-alarm to be less than or equal to a certain value.
 - ♦ E.g. in a radar system false alarm (assuming an enemy aircraft is approaching while this is not the case) may be OK but it is very important to maximize the probability of detecting a real attack
 - ♦ Based on this constraint (Neyman-Pearson criterion) we can design a classifier
 - → Typically must adjust boundaries numerically (for some distributions, such as Gaussian, analytical solutions do exist.

Any Question?

End of Lecture 6 Thank you!

Spring 2012

http://ce.sharif.edu/courses/90-91/2/ce725-1/

