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Parametric Modeling

Data availability in a Bayesian framework
We could design an optimal classifier if we knew P(wi) and P(x|wi) 

Unfortunately, we rarely have this complete information!

Assumptions
A priori information about the problem

The form of underlying density

Example: Normality of P(x|wi): Characterized by 2 parameters

Estimation techniques (studied in stochastic process course)
Maximum-Likelihood (ML) and the Bayesian estimations (MAP: Maximum A Posteriori)

Results are nearly identical, but the approaches are different!

Other techniques (will be discussed later)
Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM)
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Non-Parametric Modeling

Non-parametric modeling tries to model arbitrary distribution without assuming certain 

parametric form.

Non-parametric models can be used with arbitrary distributions and without the assumption 

that the forms of the underlying densities are known.

Moreover, They can be used with multimodal distributions which are much more common in 

practice than unimodal distributions.

There are two types of non-parametric methods:
Estimating P(x|wj )

Parzen window

Bypass probability and go directly to a-posteriori probability estimation (Estimating P(wj|x))

Kn-Nearest Neighbor
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Density Estimation

Basic idea:
Probability that a vector x will fall in region R is:

P is a smoothed (or averaged) version of the density function P(x). 

If we have a sample of size n; therefore, the probability that k points fall in R is then:

The expected value for k is E(k) = nP

ML estimation of P is reached for

Therefore, the ratio k/n is a good estimate for the density function p.

Assuming P(x) is continuous and that the region R is so small that P does not vary 
significantly within it, we can write (V is the volume of R):

Combining above equations, the density estimate becomes:
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Density Estimation

The volume V needs to approach zero if we want to use this estimation
Practically, V cannot be allowed to become small (since the number of samples is always limited).

Theoretically, if an unlimited number of samples is available, we can circumvent this difficulty

To estimate the density of x regarding above limitations, we do following steps: 
In nth step, consider a total of n data samples with the centrality of x

Form a region Rn containing x
Let Vn be the volume of Rn, kn the number of samples falling in Rn and Pn(x) be the nth estimate for P(x), then:

Pn(x) = (kn/n)/Vn

Three necessary conditions for converging Pn(x) to P(x) are:

There are two different ways of obtaining sequences of regions that satisfy these conditions:

Parzen-window estimation method: Shrink an initial region where Vn = 1/√n and show that

kn-nearest neighbor estimation method: Specify kn as some function of n,  such as kn = √n; the volume 
Vn is grown until it encloses kn neighbors of x. 
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Density Estimation

Parzen window vs. k-nearest neighbor
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Parzen Window

Parzen-window approach to estimate densities 
assume that the region Rn is a d-dimensional hypercube

ϕ((x-xi)/hn) is equal to unity if xi falls within the hypercube of volume Vn centered at x and equal to 
zero otherwise.

The number of samples in this hypercube is:

Then, we obtain the following estimate:

Pn(x) estimates p(x) as an average of functions of x and the samples (xi) (i = 1,… ,n). These 
functions ϕ can be general density function!
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Parzen Window

Example:
The behavior of the Parzen-window method for the case where both P(x) & ϕ(u)~N(0,1)

Let 

Thus:

Pn is an average of normal densities centered at the samples xi.

Numerical results for n=1 and h1=1

For n=10 and h=0.1, the contributions of the individual samples are clearly observable!
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Parzen Window - Illustration

Example illustration
Note that the n=∞ estimates are the same and match the true density function regardless of window width.
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Parzen Window - Illustration

Example 2
Case where P(x) = λ1U(a,b) + λ2T(c,d) (unknown density) – mixture of a uniform and a triangle density

The Pn as the same as previous example
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Parzen Window and Classification

In classifiers based on Parzen-window estimation:

We estimate the densities for each category and classify a test point by the label 
corresponding to the maximum posterior

Using the points of only category wi, P(x| wi) can be estimated

Knowing P(wi), posterior probabilities can be found

The decision region for a Parzen-window classifier depends upon the choice of window 
function as illustrated in the following figure. (See next slide)
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Parzen Window and Classification

The left one: a small h (complicated boundaries) - The right one: a larger h (simple 

boundaries)
compare the upper and lower regions of two cases

small h is appropriate for the upper region, large h for the lower region

No single window width is ideal overall
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Kn-Nearest Neighbor

Goal: a solution for the problem of the unknown “best” window function
Let the cell volume be a function of the training data

Center a cell about x and let it grows until it captures kn samples (kn = f(n))

kn samples are called the kn nearest-neighbors of x

Two possibilities can occur:
Density is high near x; therefore the cell will be small which provides a good resolution

Density is low; therefore the cell will grow large and stop until higher density regions are 
reached

We can obtain a family of estimates by setting kn=k1 /√n and choosing different 

values for k1
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K-NN - Illustration

For kn=√n and for n=1 the estimate becomes Pn(x)=kn/n, Vn= 1/V1=1/2|x-x1|
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K-NN and a-posteriori probabilities

Goal: estimate P(wi|x) from a set of n labeled samples
Let’s place a cell of volume V around x and capture k samples

ki samples amongst k turned out to be labeled wi then

An estimate for pn(wi| x) is:

ki/k is the fraction of the samples within the cell that are labeled wi

For minimum error rate, the most frequently represented category within the cell is selected

If k is large and the cell sufficiently small, the performance will approach the best possible 
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K-NN and Classification

The nearest neighbor Rule (K=1)
Let Dn = {x1, x2, …, xn} be a set of n labeled prototypes

Let x’∈Dn be the closest prototype to a test point x then the nearest-neighbor rule for 
classifying x is to assign it the label associated with x’

The nearest-neighbor rule leads to an error rate greater than the minimum possible: the 
Bayes rate

If the number of prototype is large (unlimited), the error rate of the nearest-neighbor 
classifier is never worse than twice the Bayes rate (it can be demonstrated!)

Think more about it. It means that 50% of the information needed to optimally classify point x 
is aggregated within its nearest labeled neighbor.

If n → ∞, it is always possible to find x’ sufficiently close so that P(wi | x’) ≅ P(wi | x) 

If P(wm|x) ≅ 1, then  the nearest neighbor selection is almost always the same as the Bayes
selection
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K-NN and Classification

The nearest neighbor rule

In 2D the nearest neighbor leads to a partitioning of the input space into Voronoi
cells

In 3D the cells are 3D and the decision boundary resembles the surface of a 
crystal
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Pros and Cons

No assumptions are needed about the distributions ahead of time 

(generality).

With enough samples, convergence to an arbitrarily complicated target 

density can be obtained.

The number of samples needed may be very large (number grows 

exponentially with the dimensionality of the feature space).

These methods are very sensitive to the choice of window size (if too small , 

most of the volume will be empty, if too large, important variations may be 

lost).

There may be severe requirements for computation time and storage.
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Any Question

End of Lecture 8

Thank you!
Spring 2012
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