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1. (15 points) Prove that 
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is a valid kernel. You can only use the

following given identities:

If k1(x,x') and k2(x,x') are valid kernels, then the following k(x,x')s are also valid kernels: 

1. k(x,x') = ck1(x,x')

2. k(x,x') = k1(x,x') + k2(x,x')

3. k(x,x') = k1(x,x'). k2(x,x')

4. k(x,x') = exp( k1(x,x') )

5. k(x,x') = f(x) k1(x,x') f(x')

Sol:
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xTx' is a valid kernel. Then, using rules 1, 4 and 5, the given kernel will also be valid.

2. (15 points) Consider the training points as below:

C1 = { (1,3)T, (1,4) T, (2,2) T }

C2 = { (4,0) T, (5,0) T, (6,1) T }

Plot data points and draw the large margin classifier that SVM finds visually. Then without 
explicitly solving the optimization problem, determine support vectors and λis for each 
training points. 

Sol:

SVs: (4,0) T, (2,2) T. 
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3. (15 points) Suppose that you are given n-dimensional real-valued feature vectors. You are 
thinking of using as kernel a function that counts in how many places both x and x' are greater 
than some constant threshold θ. In other words, let:
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Then the function defined by 
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=∑ and xj denotes jth component of x.

Show that this function is a valid kernel.

Sol:

To show validity of given kernel, it is enough to find its corresponding φ(x). We have,
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4. (20 points) After mapping into higher dimensional feature space, through a radial basis
(Gaussian) kernel function, is 1-NN using unweighted Euclidean distance able to achieve 
better classification performance than in the original space?

Sol: 

Suppose that xi and xj are two neighbors for the test instance such that

i jx x x x− < − . After mapped to feature space, we have,
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So, if xi is the nearest neighbor of x in the original space, it will also be the nearest 
neighbor of x in the original space. Therefore, the result of 1-NN in the new space is the 
same as the result in the original space.

5. (15 points) Suppose we run SVM on samples with features x1,…,xn i.e. x= (x1,…,xn)T, and 
obtain the boundary. Then, we add a random feature xn+1 to feature vectors. How does the 
boundary changes by adding this feature?

Sol:

SVM will automatically ignore this feature because it cannot possibly increase the 
margin. 

6. (20 points) Consider the following classification problem. We will use soft margin linear 
SVM for this problem. Use the following figures to show where the decision boundaries are 
likely to be for c=0.05 (in the left figure) and c=10000 (in the right figure) , respectively. Don't 
solve the problem explicitly; just give a brief justification for each case.

Sol:



Small c results in small penalties. Then, focus will be on maximizing the margin. Large 

c leads to large penalties. Then, focus will be on getting all points outside the margins.


