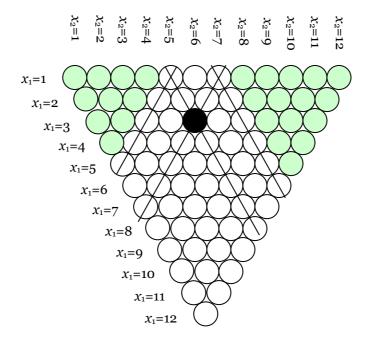

Name:	
Student ID#:	

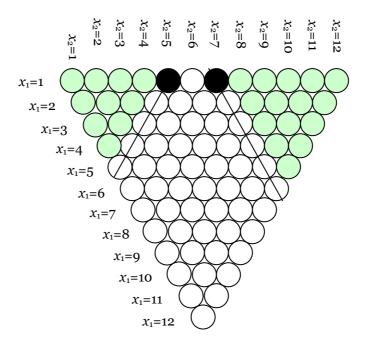
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Quiz #8 (Bayesian net) - Spring 2012


Let V_n be a Bayesian net with nodes $x_{i,j}$ for all $i+j \le n+1$, where both $i \ge 1$ and $j \ge 1$, and where the parents of $x_{i,j}$ are $x_{i-1,j}$ and $x_{i-1,j+1}$. Nodes $x_{i,j}$ have no parents. V_1 , V_2 , and V_3 are shown below.

a. (50 poins) For any V_n , give general conditions in terms of i, j, k, and l that guarantee $x_{i,j}$ independent of $x_{k,l}$ (i.e., $x_{i,j} \perp x_{k,l}$), assuming i < k.

Sol:

In general, two nodes are independent (conditioned on nothing) if they are not both descendants of the same node, and neither is a descendent of the other (the green zone in the following figure $-x_{i,j}$ is shown by black background). General conditions which enforce this are l > j+i-1 (the right green region in the figure) and l < j+1-k (the left green region in the figure).



In The Name of God, The Compassionate, The Merciful

b. (50 points) For V_n , give conditions in terms of i, j, k, and l that guarantee $x_{l,i} \perp x_{l,j} \mid x_{k,l}$ for i < j.

Sol:

 $x_{k,l}$ must not be a descendent of both (the green zone in the following figure $-x_{l,i}$ and $x_{l,j}$ are shown by black background). So, either l < j+1-k (the left green region in the figure), or l > j (the righ green region in the figure).

