Date Due: 14th Aban 1390

Homework 4 (Chapter 4)

Problems

1. Compute the Fourier transform of each of the following signals: (P 4.21 (a, c, f, g, i) p. 338 and 2 extra parts.)

a.
$$x(t) = e^{-|t|} \cos 2t$$

b.
$$[e^{-\alpha t}\cos\omega_0 t]u(t), \alpha > 0$$

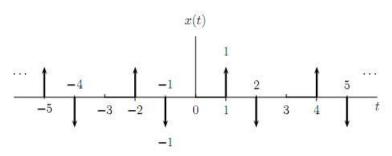
c.
$$x(t) = (1 - |t|)u(t+1)u(1-t)$$

d.
$$x(t) = \left[\frac{\sin \pi t}{\pi(t-1)}\right] \left[\frac{\sin 2\pi(t-1)}{\pi t}\right]$$

e. x(t) as shown in Figure P4.21(a) in p. 338 of textbook.

f.
$$x(t) = \begin{cases} 1 + t^2, & 0 < t < 1 \\ 0, & \text{otherwise} \end{cases}$$

g. The signal x(t) depicted below:



2. Determine the continuous-time signal corresponding to each of the following transforms:

a.
$$X(j\omega) = 5[\delta(\omega+1) - \delta(\omega-1)] - 2j[\delta(\omega-\pi) + \delta(\omega+\pi)]$$

b.
$$X(j\omega) = 2\cos(3\omega - \pi/3)$$

3. Determine which, if any, of the real signals depicted in below have Fourier transforms that satisfy each of the following conditions:

1.
$$\mathcal{R}e\{X(j\omega)\}=0$$

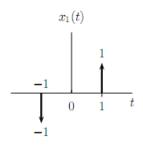
2.
$$\mathcal{I}m\{X(j\omega)\}=0$$

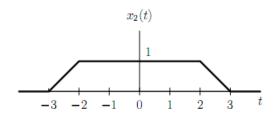
3. There exists a real α such that $e^{j\alpha\omega}X(j\omega)$ is real

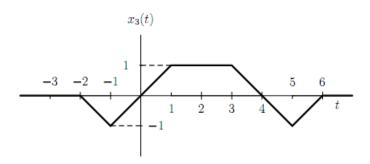
4.
$$\int_{-\infty}^{\infty} X(j\omega)d\omega = 0$$

5.
$$\int_{-\infty}^{\infty} \omega X(j\omega) d\omega = 0$$

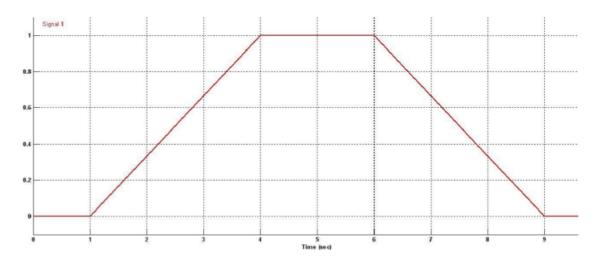
6.
$$X(j\omega)$$
 is periodic







4. Let $X(j\omega)$ denote the Fourier Transform of the signal x(t) depicted below.



- **a.** Find $\not \propto X(j\omega)$.
- **b.** Find X(0).
- c. Find $\int_{-\infty}^{\infty} X(j\omega)d\omega$. d. Evaluate $\int_{-\infty}^{\infty} X(j\omega) \frac{2\sin\omega}{\omega} e^{j2\omega}d\omega$.

- **e.** Evaluate $\int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$.
- **f.** Sketch the inverse Fourier transform of $\Re\{X(j\omega)\}$.

Note: You should perform all these calculations without explicitly evaluating $X(j\omega)$.

5. Find the impulse response of a system with the following frequency response: (P 4.18 p. 337)

$$H(j\omega) = \frac{(\sin^2(3\omega))\cos\omega}{\omega^2}.$$

6. Consider a causal, discrete-time LTI system $F : [\mathbb{Z} \to \mathbb{R}] \to [\mathbb{Z} \to \mathbb{R}]$ whose input and output signals x and y, respectively, satisfy the following linear, constant-coefficient difference equation:

$$y(n) + \alpha^2 y(n-2) = x(n) + x(n-2)$$

where $0 < \alpha < 1$.

- **a.** Determine an expression for the frequency response $F: \mathbb{R} \to \mathbb{C}$ of the system.
- **b.** Suppose $\alpha = 0.95$. Using a geometric (graphical) analysis, provide a well-labeled sketch of $|F(j\omega)|$, the magnitude of the frequency response of the system. Explain why this filter is called a *notch* filter.
- c. Suppose $\alpha = 0.95$ and that the input signal is characterized by

$$\forall n \in \mathbb{Z}, x(n) = \cos(\frac{\pi}{2}n) + \frac{1}{3}\sin(\frac{\pi}{4}n) + 3 + (-1)^n.$$

Using little to no mathematical manipulation, determine a reasonable approximation for the corresponding output signal values y(n). What assumption did you have to make about the phase response $\not \subset F$ that enabled you to approximate the output signal y? Why was your assumption about the phase reasonable?

7. (Orthogonality-Preserving Property of the CTFT) In this problem, we set out to prove that the continuous-time Fourier transform (CTFT) preserves mutual orthogonality of signals, and that the inverse of the CTFT preserves mutual orthogonality of signal spectra. Consider a set $\phi_k, k \in \mathbb{Z}$, of mutually-orthogonal functions

$$\phi_k: \mathbb{R} \to \mathbb{C}$$

each of whose elements ϕ_k has finite energy E_{ϕ} , i.e.

$$\langle \phi_k, \phi_l \rangle \triangleq \int_{-\infty}^{\infty} \phi_k(t) \phi_l^*(t) dt = E_{\phi} \delta(k-l).$$

where δ is the Kronecker delta function and * denotes complex conjugation. Let $\hat{\phi}_k$ be the CTFT (spectrum) of ϕ_k , i.e., for $k \in \mathbb{Z}$,

$$\hat{\phi}_k : \mathbb{R} \to \mathbb{C}$$

$$\forall \omega \in \mathbb{R}, \hat{\phi}_k(\omega) = \int_{-\infty}^{\infty} \phi_k(t) e^{-j\omega t} dt$$

Show that

$$\langle \hat{\phi}_k, \hat{\phi}_l \rangle \triangleq \int_{-\infty}^{\infty} \hat{\phi}_k(\omega) \hat{\phi}_l^*(\omega) d\omega = 2\pi E_{\phi} \delta(k-l).$$

Practical Assignment

1. Consider a discrete-time system H_1 with impulse response

$$h_1[n] = \delta[n] + \delta[n-1] - \delta[n-2] - \delta[n-3],$$

a discrete-time system H_2 with impulse response

$$h_2[n] = (\frac{1}{2})^n (u[n+3] - u[n-3]),$$

and a discrete-time signal

$$x[n] = (\frac{1}{4})^n (u[n] - u[n-6]).$$

The signals $h_1[n]$, $h_2[n]$, and x[n] are all defined for $-8 \le n \le 8$.

- **a.** Plot $h_1[n]$, $h_2[n]$, and x[n] together using the *subplot* function.
- **b.** Consider a system H formed from the series connection of H_1 and H_2 , where x[n] is input to H_1 , the output v[n] of H_1 is input to H_2 , and the output of H_2 is y[n]. Use the conv function to find v[n] and y[n]. Plot v[n] and y[n] using the subplot function.
- **c.** Now assume that the order of the systems is reversed, so that x[n] is input to H_2 , the output v[n] of H_2 is input to H_1 , and y[n] is the output of H_1 . Plot v[n] and y[n]. Briefly explain why v[n] is different in parts (b) and (c), whereas y[n] is the same in both parts.