In The Name of Allah

Digital Media Laboratory Advanced Information & Communication Technology Center Sharif University of Technology

Signals & Systems

Fourier Series (Part II)

Adapted from: Lecture notes from MIT

Dr. Hamid R. Rabiee

Fall 2012

Template designed by Jafar Muhammadi

CT Fourier Series Pairs

Review

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \stackrel{\omega_0 = \frac{2\pi}{T}}{=} \sum_{k=-\infty}^{\infty} a_k e^{jk\frac{2\pi}{T}t}$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$$

$$x(t) \xrightarrow{FS} a_k$$

d by lafar

(A few of the) Properties of CT Fourier Series

***** Linearity:

$$\begin{cases} x(t) \leftrightarrow a_k \\ y(t) \leftrightarrow b_k \end{cases} \Rightarrow \alpha x(t) + \beta y(t) \leftrightarrow \alpha a_k + \beta b_k \end{cases}$$

Conjugate Symmetry

 $x(t) \text{ is real} \Rightarrow a_{k} = a_{k}^{*} \\ a_{k} = \operatorname{Re}\{a_{k}\} + j \operatorname{Im}\{a_{k}\} = a_{k} | e^{j \angle a_{k}} \} \Rightarrow \operatorname{Re}\{a_{k}\} \text{ is even, Im}\{a_{k}\} \text{ is odd} \\ | a_{k} | \text{ is even, } \angle a_{k}$

Time Shift

$$x(t) \leftrightarrow a_k \Rightarrow x(t-t_0) \leftrightarrow a_k e^{-jk\omega_0 t_0} = a_k e^{-jk\frac{2\pi}{T}}$$

Multiplication Property

$$\begin{array}{c} x(t) \leftrightarrow a_k \\ y(t) \leftrightarrow b_k \\ \text{both x(t) and y(t) are periodic with them same period T} \end{array} \right\} \Rightarrow x(t). y(t) \leftrightarrow c_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l} = a_k * b_k$$

Proof:

10

ed by Jafar Mu

Periodic Convolution

Periodic Convolution: Integrate over anyone period (e.g. –T/2 to T/2)

Periodic Convolution Facts

* z(t) is periodic with period T (why?)

From previous lectures: $x(t) = x(t + T) \rightarrow y(t) = y(t + T)$ for LTI systems. In the convolution, treat y(t) as the input and $x_T(t)$ as h(t)

* Doesn't matter what period over which we choose to integrate: $z(t) = \int x(\tau) y(t - \tau) d\tau = x(t) \otimes y(t)$

$$z(t) = \int_{T} x(\tau) y(t - \tau) d\tau = x(t) \otimes y(t)$$

♦ Periodic Convolution in Time ↔ **Multiplication in Frequency**

$$\begin{aligned} x(t) &\longleftrightarrow a_k, y(t) &\longleftrightarrow b_k, x(t) \otimes y(t) = z(t) \leftrightarrow c_k \\ c_k &= \frac{1}{T} \int_T z(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T \left(\int_T x(\tau) y(t-\tau) d\tau \right) e^{-jk\omega_0 t} dt \\ &= \int_T \left(\frac{1}{T} \int_T y(t-\tau) e^{-jk\omega_0 (t-\tau)} dt \right) x(\tau) e^{-jk\omega_0 \tau} d\tau = \int_T b_k x(\tau) e^{-jk\omega_0 \tau} d\tau = Ta_k b_k \end{aligned}$$

Sharif University of Technology, Department of Computer Engineering, Signals & Systems

13

Fourier Series Representation of DT Periodic Signals

x[n] is periodic with fundamental period N and fundamental frequency ω₀

$$x[n+N] = x[n]$$
 and $\omega_0 = \frac{2\pi}{N}$

***** Only $e^{j\omega n}$ which are periodic with period N will appear in the FS

$$\omega N = k 2\pi \Leftrightarrow \omega = k \omega_0, \quad k = 0, \pm 1, \pm 2, \dots$$

***** There are only *N* distinct signals of this form

$$e^{j(k+N)\omega_0 n} = e^{jk\omega_0 n} e^{jN\omega_0 n} \stackrel{N\omega_0 n=2\pi n}{=} e^{jk\omega_0 n}$$

* So we could just use $e^{j0\omega_0 n}, e^{j1\omega_0 n}, e^{j2\omega_0 n}, ..., e^{j(N-1)\omega_0 n}$

However, it is often useful to allow the choice of N consecutive values of k to be arbitrary.

Questions:

- 1. What DT periodic signals have such a representation?
- 2. How do we find a_k ?

Questions #1: What DT periodic signals have such a representation? **Questions #2:** How do we find a_k ?

Answer to Question #1

Any DT periodic signal has a Fourier Series representation

N equations for N unknowns: $a_0, a_1, a_2, ..., a_N$

ed by Jafar

The Local Contraction of the Local Contraction

18

Note: It is convenient to think of a_k as being defined for *all* integers *k*. So:

- **1.** $a_{k+N} = a_k$: Special property of DT Fourier Coefficients.
- We only use N consecutive values of a_k in the synthesis equation. (Since x[n] is periodic, it is specified by N numbers, either in the time or frequency domain)

6

Example #1: Sum of a pair of sinusoids

$$x[n] = \cos(\pi n / 8) + \cos(\pi n / 4 + \pi / 4)$$

(periodic with period N = 16 $\rightarrow \omega_0 = \pi/8$)

$$x[n] = \frac{1}{2} [e^{j\omega_0 n} + e^{-j\omega_0 n}] + \frac{1}{2} [e^{j\pi/4} e^{j2\omega_0 n} + e^{-j\pi/4} e^{-j2\omega_0 n}]$$

$$a_0 = 0$$

$$a_1 = 1/2$$

$$a_{-1} = 1/2$$

$$a_{-1} = 1/2$$

$$a_{15} = a_{-1+16} = a_{-1} = \frac{1}{2}$$

$$a_{-2} = e^{-j\pi/4} / 2$$

$$a_{66} = a_{2+4\times 16} = a_2 = e^{j\pi/4} / 2$$

$$a_3 = 0$$

$$a_{-3} = 0$$

$$\vdots$$

Convergence Issues for DT Fourier Series:

Not an issue, since all series are finite sums.

Properties of DT Fourier Series: Lots, just as with CT Fourier Series

Example: