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CT Fourier Series Pairs

Review
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Example #1: Periodic Impulse Train
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Example #1: Periodic Impulse Train
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Example #1: Periodic Impulse Train
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(A few of the) Properties of CT Fourier Series

� Linearity:

� Conjugate Symmetry

� Time Shift
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Example #2: Shift by half period
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Example #2: Shift by half period
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Parseval’s Relation

Energy is the same whether measured in the time-domain or the 

frequency-domain

Average signal power 
Power in the 
kth harmonic 
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Multiplication Property

Proof:
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Periodic Convolution

x(t), y(t) periodic with period T
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Periodic Convolution

Periodic Convolution: Integrate over anyone period (e.g. –T/2 to T/2)
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Periodic Convolution Facts

� z(t) is periodic with period T (why?)

From previous lectures: x(t) = x(t + T) → y(t) = y(t + T) for LTI systems.

In the convolution, treat  y(t) as the input and xT(t) as h(t)

� Doesn’t matter what period over which we choose to integrate:

� Periodic Convolution in Time ↔ Multiplication in Frequency
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Fourier Series Representation of DT Periodic Signals

� x[n] is periodic with fundamental period N and fundamental 

frequency ω0

� Only ejωn which are periodic with period N will apear in the FS

� There are only N distinct signals of this form

� So we could just use

� However, it is often useful to allow the choice of N consecutive values 

of k to be arbitrary.
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DT Fourier Series Representation
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Questions:

1. What DT periodic signals have such a representation?

2. How do we find ak?
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DT Fourier Series Representation
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Questions #1: What DT periodic signals have such a representation?

Questions #2: How do we find ak?
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Answer to Question #1

Any DT periodic signal has a Fourier Series representation
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A More Direct Way to Solve for ak
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A More Direct Way to Solve for ak

So, from multiply both sides by

and then
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Equation Analysis][
1

Equation Synthesis][
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Note: It is convenient to think of ak as being defined for all  integers 

k. So:

1. ak+N = ak: Special property of DT Fourier Coefficients.

2. We only use N consecutive values of ak in the synthesis equation. 

(Since x[n] is periodic, it is specified by N numbers, either in the time 

or frequency domain)
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Example #1: Sum of a pair of sinusoids

(periodic with period N = 16→ ω0 = π/8)
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Example #2: DT Square Wave
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For k ≠ multiple of N: (Using n = m – N1)
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Example #2: DT Square Wave
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Convergence Issues for DT Fourier Series:

Not an issue, since all series are finite sums.

Properties of DT Fourier Series: Lots, just as with CT Fourier Series

Example:

Frequency shift
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