DML
DML Sharif University of Technology
Active Learning from Positive and Unlabeled Data
  Dec   2011      
A. Ghasemi , H.R. Rabiee , M. Fadaee , M.T. Manzuri and M.H. Rohban
During recent years, active learning has evolved into a popular paradigm for utilizing user’s feedback to improve accuracy of learning algorithms. Active learning works by selecting the most informative sample among unlabeled data and querying the label of that point from user. Many different methods such as uncertainty sampling and minimum risk sampling have been utilized to select the most informative sample in active learning. However, although many active learning algorithms have been proposed so far, most of them work with binary or multi-class classification problems and therefore can not be applied to problems in which only samples from one class as well as a set of unlabeled data are available. Such problems arise in many real-world situations and are knows as the problem of learning from positive and unlabeled data. In this paper we propose an active learning algorithm that can work when only samples of one class as well as a set of unlabelled data are available. Experiments and empirical analysis show promising results compared to other similar methods.
Type
Workshop
Workshop
11th International Conference on Data Mining Workshops
Publisher
IEEE
Volume
1
ISBN
978-0-7695-4409-0
Pages
244-250
Location
Vancouver, BC, Canada